Новости

20 декабря, 2017 22:42

Обнаружили новый механизм транспорта ионов в нанопорах мембран с проводящей поверхностью

Ученые Института вычислительного моделирования Федерального исследовательского центра Красноярский научный центр СО РАН (ФИЦ КНЦ СО РАН) и Сибирского федерального университета открыли новый механизм транспорта ионов через нанопористые мембраны с проводящей поверхностью. Такие мембраны оказались очень чувствительны к разности в скоростях диффузии заряженных частиц. Они могут найти применение при создании сенсоров для определения концентрации ионов. Результаты исследований опубликованы в журналах Physical Review Letters и Journal of Membrane Science.
Фото: поверхность мембраны из нановолокон Nafen, покрытых слоем углерода. Источник: Новости сибирской науки

Мембрана представляет собой селективный барьер, пропускающий одни компоненты и задерживающий другие. Разделение смесей с помощью мембран широко используется в химической, топливно-энергетической, фармацевтической, пищевой и других отраслях промышленности. Одна из наиболее важных проблем, которая решается с помощью селективной фильтрации – обессоливание воды, то есть удаление из нее ионов солей (натрия, кальция, хлора и др.). Другой интересной и практически важной задачей является получение электроэнергии путем смешения соленой и пресной воды.

Нанопора мембраны, которая разделяет водные растворы с различными концентрациями соли

В ходе реализации поддержанного Российским научным фондом проекта по созданию технологии управляемой фильтрации заряженных частиц, коллектив красноярских ученых в составе доктора физико-математических наук Ильи Рыжкова, кандидата физико-математических наук Дениса Лебедева и кандидата химических наук Веры Солодовниченко открыл новый механизм транспорта ионов через нанопористые мембраны с проводящей поверхностью. В работе использовали мембраны из нановолокон оксида алюминия (Nafen) толщиной порядка 10 нанометров, покрытые проводящим слоем углерода.

«Если мембрана разделяет растворы соли различной концентрации, то возникает диффузия, выравнивающая содержание растворенных веществ по обе стороны. Когда перемещение заряженных частиц происходит с различной скоростью, то в порах мембраны возникает электрическое поле, которое ускоряет медленные ионы и тормозит быстрые. В результате потоки ионов становятся равными, а между растворами соли образуется разность потенциалов, при этом электрический ток отсутствует», – пояснил доктор физико-математических наук, ведущий научный сотрудник Института вычислительного моделирования ФИЦ КНЦ СО РАН Илья Рыжков.

Явление наблюдается, когда пора имеет проводящую поверхность. В этом случае электроны на поверхности поры перераспределяются таким образом, чтобы компенсировать возникающее поле. В результате часть проводящего канала оказывается заряженной отрицательно, а другая часть – положительно. Это приводит к увеличению концентрации положительных ионов вблизи отрицательно заряженной поверхности и наоборот.

«Наши эксперименты и теоретические расчеты показали, что разность потенциалов между растворами, разделяемыми мембраной, в случае проводящих пор резко возрастает по сравнению с диэлектрическими порами. При этом она становится очень чувствительной даже к небольшим отличиям в скорости диффузии ионов. Мы полагаем, что эффект может найти применение при создании сенсоров для определения концентрации ионов, искусственных аналогов селективных ионных каналов в биологических клетках, а также микро- и нанофлюидых устройств», – добавил ученый.

В настоящее время коллектив продолжает работу над реализацией управляемого транспорта ионов через мембраны. Изменяя потенциал проводящей поверхности пор, можно настроить селективность мембран на целевые компоненты: полярные молекулы, ионы, заряженные частицы. Это открывает широкие перспективы для повышения эффективности существующих методов разделения смесей.

29 марта, 2024
Российские ученые обучили ИИ подбирать эффективную защиту для глаз от лазерного излучения
Российские ученые разработали нейросеть для быстрой оценки способности материалов блокировать опас...
28 марта, 2024
Ученые ИТМО создали более долговечные синие перовскитные светодиоды
Ученые ИТМО нашли новый способ получения синего излучения у перовскитных нанокристаллов. Он позвол...